Skip to main content

Section 5 Volume and Determinant

Subsection 5.1 Multilinearity

Let \(m,n_1,n_2,\ldots,n_k\) be nonnegative integers. A function \(L\colon \R^{n_1}\times \R^{n_2}\times \cdots \times \R^{n_k}\to \R^m \) is called multilinear if
  1. \(L((\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k)+ (\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_k)) = L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k) + L(\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_k)\text{,}\) and
  2. \(\displaystyle L(\alpha_1\mathbf{x}_1,\alpha_2\mathbf{x}_2,\ldots,\alpha_k\mathbf{x}_k) = \alpha_1\alpha_2\cdots \alpha_k L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k)\)
for all \(k\)-tuples of vectors \((\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k),(\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_k)\) in \(\R^n\) and \(k\)-tuples of real numbers \(\alpha_1,\alpha_2,\ldots,\alpha_k\text{.}\)