Proposition 1.2.1. All Boolean functions are polynomial.
Let \(x_1,x_2,\ldots,x_n\) be Boolean variables, and let \(f\colon \B^n \to \B\) be a function. Then \(f(x_1,x_2,\ldots,x_n)\) may be written as a polynomial
\begin{equation}
f(x_1,x_2,\ldots,x_n)=\sum_{I=(i_1,i_2,\ldots,i_n)\in
\B^n}c_I x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}\tag{1.2.1}
\end{equation}
for some constants \(c_I=c_{i_1,i_2,\ldots,i_n}\in \B\text{.}\)
