Skip to main content
Contents
Dark Mode Prev Up Next
\(\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\Inn}{Inn}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\Orb}{Orb}
\DeclareMathOperator{\Rot}{Rot}
\DeclareMathOperator{\re}{Re}
\DeclareMathOperator{\im}{Im}
\DeclareMathOperator{\img}{image}
\DeclareMathOperator{\conj}{conj}
\DeclareMathOperator{\Id}{Id}
\def\expi{E}
\def\wrap{W}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Quat}{\mathbb{H}}
\newcommand{\extC}{\hat{\C}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\extR}{\hat{\R}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\extF}{\hat{\F}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Proj}{\mathbb{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\M}{{\rm MOB}}
\newcommand{\E}{{\rm EUC}}
\renewcommand{\H}{{\rm HYP}}
\newcommand{\HU}{\rm HYP_{\U}}
\renewcommand{\S}{{\rm ELL}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\closedD}{\hat{\D}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\spacer}{\rule[0cm]{0cm}{0cm}}
\newcommand{\MOD}{\mathbin{\text{MOD}}}
\newcommand{\twotwo}[4]{\left[ \begin{array}{cc} #1 \amp #2 \\
#3 \amp #4 \end{array} \right]}
\let\oldsection\section
\renewcommand{\section}{\clearpage\oldsection}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 1 Logic
Logic is the study of the formal structure of reasoning. In mathematical sciences, we use logic to construct arguments, and also to analyze the validity of arguments.
In this course we consider a traditional and standard version of logic, which has the following basic ingredients.
statements: declarative sentences that claim something is true
two truth values: every statement must be unambiguously true or false , but not both
connectives: statements can be combined with logical connectives not , and , or , if-then , and others, to form new statements
rules of reasoning: these are rules for establishing the truth of statements based on an established sequence of true statements
We will follow the usual approach used in introductory proof writing courses that relies on intuition, rather than a formal axiomatic treatment of logic.