Skip to main content
Contents
Dark Mode Prev Up Next
\( \DeclareMathOperator{\var}{var}
\DeclareMathOperator{\covar}{cov}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\Inn}{Inn}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\Orb}{Orb}
\DeclareMathOperator{\Rot}{Rot}
\DeclareMathOperator{\re}{Re}
\DeclareMathOperator{\im}{Im}
\DeclareMathOperator{\img}{image}
\DeclareMathOperator{\conj}{conj}
\DeclareMathOperator{\Id}{Id}
\DeclareMathOperator{\SD}{SD}
\def\expi{E}
\def\wrap{W}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Quat}{\mathbb{H}}
\newcommand{\extC}{\hat{\C}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\extR}{\hat{\R}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\extF}{\hat{\F}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Proj}{\mathbb{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\M}{{\rm MOB}}
\newcommand{\E}{{\rm EUC}}
\renewcommand{\H}{{\rm HYP}}
\newcommand{\HU}{\rm HYP_{\U}}
\renewcommand{\S}{{\rm ELL}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\closedD}{\hat{\D}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\spacer}{\rule[0cm]{0cm}{0cm}}
\newcommand{\MOD}{\mathbin{\text{MOD}}}
\newcommand{\twotwo}[4]{\left[ \begin{array}{cc} #1 \amp #2 \\
#3 \amp #4 \end{array} \right]}
\let\oldsection\section
\renewcommand{\section}{\clearpage\oldsection}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix A Projects
Use existing tools, or write your own code, or do a mix of both, to carry out one or more of the following projects. You may also propose a project idea that is not on this list.
Given a data set in an input file, draw the histogram for the distribuition function for the empirical random variable defined by the data.
Given a data set in an input file, draw the histogram for the empirical distribuition defined by the data.
Given a data set in an input file, calculate the mean and standard deviation for the empirical distribuition defined by the data.
Given a data set in an input file, generate a percentile table the empirical distribuition defined by the data.
Plot a sequence of normalized binomial histograms together with the normal distribution to illustrate convergence.
Plot a sequence of normalized binomial cdfβs together with the normal cdf to illustrate convergence. Do an animated version if possible.
Generate 100 samples of some size, then plot the confidence intervals from the samples.