Definition 4.1. Events defined by random variables.
Let \((\Omega,P)\) be a discrete probability model and let \(X\colon \Omega\to Y\) be a random variable. Given a subset \(A\subseteq Y\text{,}\) we define the event \(\text{"}X\in A\text{"}\) by
\begin{equation}
\text{"}X\in A\text{"} = X^{-1}(A)=\{\omega \in \Omega\colon X(\omega)\in A\}.\tag{4.1}
\end{equation}
In particular, if \(X\) is a quantitative random variable and \(\lambda\) is a real number, the event \(\text{"} X\leq
\lambda\text{"}\) is the event
\begin{equation}
\text{"}X\leq \lambda\text{"} = (X^{-1}((-\infty,\lambda])=
\{\omega \in \Omega\colon X(\omega)\leq \lambda\}.\tag{4.2}
\end{equation}
