Skip to main content
Introduction to Groups and Geometries
David W. Lyons
x
Search Results:
No results.
☰
Contents
Index
You!
Choose avatar
▻
✔️
You!
😺
👤
👽
🐶
🐼
🌈
Font family
▻
✔️
Open Sans
AaBbCc 123 PreTeXt
Roboto Serif
AaBbCc 123 PreTeXt
Adjust font
▻
Size
12
Smaller
Larger
Width
100
narrower
wider
Weight
400
thinner
heavier
Letter spacing
0
/200
closer
f a r t h e r
Word spacing
0
/50
smaller gap
larger gap
Line Spacing
135
/100
closer
together
further
apart
Light/dark mode
▻
✔️
default
pastel
twilight
dark
midnight
Reading ruler
▻
✔️
none
underline
L-underline
grey bar
light box
sunrise
sunrise underline
Motion by:
✔️
follow the mouse
up/down arrows - not yet
eye tracking - not yet
<
Prev
^
Up
Next
>
🔍
\( \DeclareMathOperator{\Inn}{Inn} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Perm}{Perm} \DeclareMathOperator{\Stab}{Stab} \DeclareMathOperator{\Orb}{Orb} \DeclareMathOperator{\Rot}{Rot} \DeclareMathOperator{\re}{Re} \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\img}{image} \DeclareMathOperator{\conj}{conj} \DeclareMathOperator{\Id}{Id} \newcommand{\C}{\mathbb{C}} \newcommand{\Quat}{\mathbb{H}} \newcommand{\extC}{\hat{\C}} \newcommand{\R}{\mathbb{R}} \newcommand{\extR}{\hat{\R}} \newcommand{\F}{\mathbb{F}} \newcommand{\extF}{\hat{\F}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Proj}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\M}{{\rm \bf M}} \newcommand{\E}{{\rm \bf E}} \renewcommand{\H}{{\rm \bf H }} \newcommand{\HU}{\H_{\U}} \renewcommand{\S}{{\rm \bf S}} \newcommand{\D}{\mathbb{D}} \newcommand{\closedD}{\hat{\D}} \newcommand{\U}{\mathbb{U}} \newcommand{\spacer}{\rule[0cm]{0cm}{0cm}} \newcommand{\MOD}{\mathbin{\text{MOD}}} \newcommand{\twotwo}[4]{\left[ \begin{array}{cc} #1 \amp #2 \\ #3 \amp #4 \end{array} \right]} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Colophon
Preface
About the author
1
Preliminaries
1.1
Complex numbers
1.1.1
Real and imaginary parts
1.1.2
Modulus and argument
1.1.3
Addition and multiplication of complex numbers
1.1.4
The complex exponential function
1.1.5
Conjugation
1.1.6
Circles and lines
1.1.7
Exercises
1.2
Quaternions
1.2.1
Cartesian form and pure quaternions
1.2.2
Correspondence with complex matrices
1.2.3
Addition and multiplication
1.2.4
Conjugate, modulus, and polar form
1.2.5
Quaternions as rotations of
\(\R^3_\Quat\)
1.2.6
Exercises
1.3
Stereographic projection
1.3.1
Stereographic projection
\(S^1\to \extR\)
1.3.2
Stereographic projection
\(S^2\to \extC\)
1.3.3
Exercises
1.4
Equivalence relations
1.4.1
Definitions
1.4.2
Important example: the integers modulo an integer
\(n\)
1.4.3
Facts
1.4.4
Exercises
1.5
More preliminary topics
1.5.1
A useful tool: commutative diagrams
1.5.2
Exercises
2
Groups
2.1
Examples of groups
2.1.1
Permutations
2.1.2
Symmetries of regular polygons
2.1.3
The norm 1 complex numbers
2.1.4
The
\(n\)
-th roots of unity
2.1.5
Integers
2.1.6
Invertible matrices
2.1.7
Nonzero elements in a field
2.1.8
Unit quaternions
2.1.9
Exercises
2.2
Definition of a group
2.2.1
2.2.2
Exercises
2.3
Subgroups and cosets
2.3.1
2.3.2
Exercises
2.4
Group homomorphisms
2.4.1
2.4.2
Exercises
2.5
Group actions
2.5.1
2.5.2
2.5.3
Exercises
2.6
Additional exercises
2.6
Exercises
3
Geometries
3.1
Geometries and models
3.1.1
Examples of geometries
3.1.2
Planar geometries
3.1.3
Subgeometries and equivalent geometries
3.1.4
Exercises
3.2
Möbius geometry
3.2.1
Möbius transformations
3.2.2
The Fundamental Theorem of Möbius Geometry
3.2.3
Cross ratio
3.2.4
Clines (generalized circles)
3.2.5
Symmetry with respect to a cline
3.2.6
Normal forms
3.2.7
Steiner circles
3.2.8
Exercises
3.3
Hyperbolic geometry
3.3.1
The hyperbolic transformation group
3.3.2
Classification of clines in hyperbolic geometry
3.3.3
Normal forms for the hyperbolic group
3.3.4
Hyperbolic length and area
3.3.5
The upper-half plane model
3.3.6
Exercises
3.4
Elliptic geometry
3.4.1
The group of unit quaternions
3.4.2
The group of rotations of the 2-sphere
3.4.3
The elliptic subgroup of the Möbius group
3.4.4
Circles in
\(S^2\)
and clines in
\(\extC\)
3.4.5
Angles and orientation on
\(S^2\)
3.4.6
Elliptic length and area
3.4.7
Exercises
3.5
Projective geometry
3.5.1
Projective points, lines, and flats
3.5.2
Coordinates
3.5.3
Freedom in projective transformations
3.5.4
The real projective plane
3.5.5
Exercises
3.6
Additional exercises
3.6
Exercises
Back Matter
Further topics
References
Index
Notation
Introduction to Groups and Geometries
David W. Lyons
Department of Mathematical Sciences
Lebanon Valley College
Annville, PA, USA
lyons@lvc.edu
May 2023 Edition, revised: May 12, 2023
Colophon
Preface
About the author