Say which of the following are true, or false, or neither. Explain.
\begin{align*}
6|3 \amp \amp 3|6 \amp \amp 6/3
\end{align*}
The Fundamental Theorem of Arithmetic, version 2 (FTAv2). Every integer \(n\gt 1\) can be written in the form\begin{equation} n=p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}\tag{1.5.1} \end{equation}where \(p_1,p_2,\ldots,p_r\) are primes with \(p_1\lt p_2\lt \cdots \lt p_r\text{,}\) and the numbers \(e_1,e_2,\ldots,e_r\) and the number \(r\) are positive integers. Further, this expression is unique in the sense that if \(n=q_1^{f_1}q_2^{f_2}\cdots q_s^{f_s}\) for some increasing sequence of primes \(q_1,q_2,\ldots,q_s\) and positive integers \(f_1,f_2,\ldots,f_s\text{,}\) then \(s=r\text{,}\) \(q_i=p_i\) for all \(i\text{,}\) and \(f_i=e_i\) for all \(i\text{.}\)